29 research outputs found

    Shadows and traces in bicategories

    Full text link
    Traces in symmetric monoidal categories are well-known and have many applications; for instance, their functoriality directly implies the Lefschetz fixed point theorem. However, for some applications, such as generalizations of the Lefschetz theorem, one needs "noncommutative" traces, such as the Hattori-Stallings trace for modules over noncommutative rings. In this paper we study a generalization of the symmetric monoidal trace which applies to noncommutative situations; its context is a bicategory equipped with an extra structure called a "shadow." In particular, we prove its functoriality and 2-functoriality, which are essential to its applications in fixed-point theory. Throughout we make use of an appropriate "cylindrical" type of string diagram, which we justify formally in an appendix.Comment: 46 pages; v2: reorganized and shortened, added proof for cylindrical string diagrams; v3: final version, to appear in JHR

    Understanding the small object argument

    Full text link
    The small object argument is a transfinite construction which, starting from a set of maps in a category, generates a weak factorisation system on that category. As useful as it is, the small object argument has some problematic aspects: it possesses no universal property; it does not converge; and it does not seem to be related to other transfinite constructions occurring in categorical algebra. In this paper, we give an "algebraic" refinement of the small object argument, cast in terms of Grandis and Tholen's natural weak factorisation systems, which rectifies each of these three deficiencies.Comment: 42 pages; supersedes the earlier arXiv preprint math/0702290; v2: final journal version, minor corrections onl

    Combining computational effects: commutativity and sum

    Get PDF
    We begin to develop a unified account of modularity for computational effects. We use the notion of enriched Lawvere theory, together with its relationship with strong monads, to reformulate Moggi’s paradigm for modelling computational effects; we emphasise the importance here of the operations that induce computational effects. Effects qua theories are then combined by appropriate bifunctors (on the category of theories). We give a theory of the commutative combination of effects, which in particular yields Moggi’s side-effects monad transformer (an application is the combination of side-effects with nondeterminism). And we give a theory for the sum of computational effects, which in particular yields Moggi’s exceptions monad transformer (an application is the combination of exceptions with other effects)

    “Biological Geometry Perception”: Visual Discrimination of Eccentricity Is Related to Individual Motor Preferences

    Get PDF
    In the continuum between a stroke and a circle including all possible ellipses, some eccentricities seem more “biologically preferred” than others by the motor system, probably because they imply less demanding coordination patterns. Based on the idea that biological motion perception relies on knowledge of the laws that govern the motor system, we investigated whether motorically preferential and non-preferential eccentricities are visually discriminated differently. In contrast with previous studies that were interested in the effect of kinematic/time features of movements on their visual perception, we focused on geometric/spatial features, and therefore used a static visual display.In a dual-task paradigm, participants visually discriminated 13 static ellipses of various eccentricities while performing a finger-thumb opposition sequence with either the dominant or the non-dominant hand. Our assumption was that because the movements used to trace ellipses are strongly lateralized, a motor task performed with the dominant hand should affect the simultaneous visual discrimination more strongly. We found that visual discrimination was not affected when the motor task was performed by the non-dominant hand. Conversely, it was impaired when the motor task was performed with the dominant hand, but only for the ellipses that we defined as preferred by the motor system, based on an assessment of individual preferences during an independent graphomotor task.Visual discrimination of ellipses depends on the state of the motor neural networks controlling the dominant hand, but only when their eccentricity is “biologically preferred”. Importantly, this effect emerges on the basis of a static display, suggesting that what we call “biological geometry”, i.e., geometric features resulting from preferential movements is relevant information for the visual processing of bidimensional shapes

    Time Changes with the Embodiment of Another’s Body Posture

    Get PDF
    The aim of the present study was to investigate whether the perception of presentation durations of pictures of different body postures was distorted as function of the embodied movement that originally produced these postures. Participants were presented with two pictures, one with a low-arousal body posture judged to require no movement and the other with a high-arousal body posture judged to require considerable movement. In a temporal bisection task with two ranges of standard durations (0.4/1.6 s and 2/8 s), the participants had to judge whether the presentation duration of each of the pictures was more similar to the short or to the long standard duration. The results showed that the duration was judged longer for the posture requiring more movement than for the posture requiring less movement. However the magnitude of this overestimation was relatively greater for the range of short durations than for that of longer durations. Further analyses suggest that this lengthening effect was mediated by an arousal effect of limited duration on the speed of the internal clock system

    Homotopical algebra is not concrete

    No full text

    Vektorräume

    No full text

    Correspondences and Exact Squares

    No full text
    corecore